Monday, June 3, 2013

Deadlock In Threads



Thread Deadlock:

A special type of error that you need to avoid that relates specifically to multitasking is deadlock, which occurs when two threads have a circular dependency on a pair of synchronized objects.
For example, suppose one thread enters the monitor on object X and another thread enters the monitor on object Y. If the thread in X tries to call any synchronized method on Y, it will block as expected. However, if the thread in Y, in turn, tries to call any synchronized method on X, the thread waits forever, because to access X, it would have to release its own lock on Y so that the first thread could complete.
Example:
To understand deadlock fully, it is useful to see it in action. The next example creates two classes, A and B, with methods foo ( ) and bar ( ), respectively, which pause briefly before trying to call a method in the other class.
The main class, named Deadlock, creates an A and a B instance, and then starts a second thread to set up the deadlock condition. The foo ( ) and bar ( ) methods use sleep ( ) as a way to force the deadlock condition to occur.

class A {
   synchronized void foo(B b) {
      String name = Thread.currentThread().getName();
      System.out.println(name + " entered A.foo");
      try {
         Thread.sleep(1000);
      } catch(Exception e) {
         System.out.println("A Interrupted");
      }
      System.out.println(name + " trying to call B.last()");
      b.last();
   }
   synchronized void last() {
      System.out.println("Inside A.last");
   }
}
class B {
   synchronized void bar(A a) {
      String name = Thread.currentThread().getName();
      System.out.println(name + " entered B.bar");
      try {
         Thread.sleep(1000);
      } catch(Exception e) {
         System.out.println("B Interrupted");
      }
      System.out.println(name + " trying to call A.last()");
      a.last();
   }
   synchronized void last() {
      System.out.println("Inside A.last");
   }
}
class Deadlock implements Runnable {
   A a = new A();
   B b = new B();
   Deadlock() {
      Thread.currentThread().setName("MainThread");
      Thread t = new Thread(this, "RacingThread");
      t.start();
      a.foo(b); // get lock on a in this thread.
      System.out.println("Back in main thread");
   }
   public void run() {
      b.bar(a); // get lock on b in other thread.
      System.out.println("Back in other thread");
   }
   public static void main(String args[]) {
      new Deadlock();
   }
}
Here is some output from this program:
MainThread entered A.foo
RacingThread entered B.bar
MainThread trying to call B.last()
RacingThread trying to call A.last()


Because the program has deadlocked, you need to press CTRL-C to end the program. You can see a full thread and monitor cache dump by pressing CTRL-BREAK on a PC.
You will see that RacingThread owns the monitor on b, while it is waiting for the monitor on a. At the same time, MainThread owns a and is waiting to get b. This program will never complete.
As this example illustrates, if your multithreaded program locks up occasionally, deadlock is one of the first conditions that you should check for.
Ordering Locks:
A common threading trick to avoid the deadlock is to order the locks. By ordering the locks, it gives threads a specific order to obtain multiple locks.
Deadlock Example:
Following is the depiction of a dead lock:


// File Name ThreadSafeBankAccount.java
public class ThreadSafeBankAccount
{
   private double balance;
   private int number;
   public ThreadSafeBankAccount(int num, double initialBalance)
   {
      balance = initialBalance;
      number = num;
   }
   public int getNumber()
   {
      return number;
   }
   public double getBalance()
   {
      return balance;
   }
   public void deposit(double amount)
   {
      synchronized(this)
      {
        double prevBalance = balance;
        try
        {
           Thread.sleep(4000);
        }catch(InterruptedException e)
        {}
        balance = prevBalance + amount;
      }
   }
   public void withdraw(double amount)
   {
      synchronized(this)
      {
                     double prevBalance = balance;
         try
         {
            Thread.sleep(4000);
         }catch(InterruptedException e)
         {}
         balance = prevBalance - amount;
      }
   }
}

// File Name LazyTeller.java
public class LazyTeller extends Thread
{
   private ThreadSafeBankAccount source, dest;
   public LazyTeller(ThreadSafeBankAccount a,
                     ThreadSafeBankAccount b)
   {
      source = a;
      dest = b;
   }
   public void run()
   {
      transfer(250.00);
   }
   public void transfer(double amount)
   {
      System.out.println("Transferring from "
          + source.getNumber() + " to " + dest.getNumber());
      synchronized(source)
      {
          Thread.yield();
          synchronized(dest)
          {
             System.out.println("Withdrawing from "
                     + source.getNumber());
             source.withdraw(amount);
             System.out.println("Depositing into "
                     + dest.getNumber());
             dest.deposit(amount);
          }
       }
   }
}
public class DeadlockDemo
{
   public static void main(String [] args)
   {
      System.out.println("Creating two bank accounts...");
      ThreadSafeBankAccount checking =
                    new ThreadSafeBankAccount(101, 1000.00);
      ThreadSafeBankAccount savings =
                    new ThreadSafeBankAccount(102, 5000.00);

      System.out.println("Creating two teller threads...");
      Thread teller1 = new LazyTeller(checking, savings);
      Thread teller2 = new LazyTeller(savings, checking);
      System.out.println("Starting both threads...");
      teller1.start();
      teller2.start();
   }
}


This would produce following result:


Creating two bank accounts...
Creating two teller threads...
Starting both threads...
Transferring from 101 to 102
Transferring from 102 to 101


The problem with the LazyTeller class is that it does not consider the possibility of a race condition, a common occurrence in multithreaded programming.
After the two threads are started, teller1 grabs the checking lock and teller2 grabs the savings lock. When teller1 tries to obtain the savings lock, it is not available. Therefore, teller1 blocks until the savings lock becomes available. When the teller1 thread blocks, teller1 still has the checking lock and does not let it go.
Similarly, teller2 is waiting for the checking lock, so teller2 blocks but does not let go of the savings lock. This leads to one result: deadlock!
Deadlock Solution Example:
Here transfer() method, in a class named OrderedTeller, in stead of arbitrarily synchronizing on locks, this transfer() method obtains locks in a specified order based on the number of the bank account.


// File Name ThreadSafeBankAccount.java
public class ThreadSafeBankAccount
{
   private double balance;
   private int number;
   public ThreadSafeBankAccount(int num, double initialBalance)
   {
      balance = initialBalance;
      number = num;
   }
   public int getNumber()
   {
      return number;
   }
   public double getBalance()
   {
      return balance;
   }
   public void deposit(double amount)
   {
      synchronized(this)
      {
        double prevBalance = balance;
        try
        {
           Thread.sleep(4000);
        }catch(InterruptedException e)
        {}
        balance = prevBalance + amount;
      }
   }
   public void withdraw(double amount)
   {
      synchronized(this)
      {
                     double prevBalance = balance;
         try
         {
            Thread.sleep(4000);
         }catch(InterruptedException e)
         {}
         balance = prevBalance - amount;
      }
   }
}
// File Name OrderedTeller.java
public class OrderedTeller extends Thread
{
   private ThreadSafeBankAccount source, dest;
   public OrderedTeller(ThreadSafeBankAccount a,
                        ThreadSafeBankAccount b)
   {
      source = a;
      dest = b;
   }
   public void run()
   {
      transfer(250.00);
   }
   public void transfer(double amount)
   {
       System.out.println("Transferring from " + source.getNumber()
           + " to " + dest.getNumber());
       ThreadSafeBankAccount first, second;
       if(source.getNumber() < dest.getNumber())
       {
          first = source;
          second = dest;
       }
       else
       {
          first = dest;
          second = source;
       }
       synchronized(first)
       {
          Thread.yield();
          synchronized(second)
          {
             System.out.println("Withdrawing from "
                         + source.getNumber());
             source.withdraw(amount);
             System.out.println("Depositing into "
                         + dest.getNumber());
             dest.deposit(amount);
          }
      }
   }
}

// File Name DeadlockDemo.java
public class DeadlockDemo
{
   public static void main(String [] args)
   {
      System.out.println("Creating two bank accounts...");
      ThreadSafeBankAccount checking =
                    new ThreadSafeBankAccount(101, 1000.00);
      ThreadSafeBankAccount savings =
                    new ThreadSafeBankAccount(102, 5000.00);

      System.out.println("Creating two teller threads...");
      Thread teller1 = new OrderedTeller(checking, savings);
      Thread teller2 = new OrderedTeller(savings, checking);
      System.out.println("Starting both threads...");
      teller1.start();
      teller2.start();
   }
}



This would remove deadlock problem and would produce following result:



Creating two bank accounts...
Creating two teller threads...
Starting both threads...
Transferring from 101 to 102
Transferring from 102 to 101
Withdrawing from 101
Depositing into 102
Withdrawing from 102
Depositing into 101

Multi-Threading Control and use



Thread Control 

While the suspend ( ), resume( ), and stop( ) methods defined by Thread class seem to be a perfectly reasonable and convenient approach to managing the execution of threads, they must not be used for new Java programs and obsolete in newer versions of Java.
The following example illustrates how the wait ( ) and notify( ) methods that are inherited from Object can be used to control the execution of a thread.
This example is similar to the program in the previous section. However, the deprecated method calls have been removed. Let us consider the operation of this program.
The NewThread class contains a boolean instance variable named suspendFlag, which is used to control the execution of the thread. It is initialized to false by the constructor.
The run( ) method contains a synchronized statement block that checks suspendFlag. If that variable is true, the wait( ) method is invoked to suspend the execution of the thread. The mysuspend( ) method sets suspendFlag to true. The myresume( ) method sets suspendFlag to false and invokes notify( ) to wake up the thread. Finally, the main( ) method has been modified to invoke the mysuspend( ) and myresume( ) methods.

Example:

// Suspending and resuming a thread for Java 2
class NewThread implements Runnable {
   String name; // name of thread
   Thread t;
   boolean suspendFlag;
   NewThread(String threadname) {
      name = threadname;
      t = new Thread(this, name);
      System.out.println("New thread: " + t);
      suspendFlag = false;
      t.start(); // Start the thread
   }
   // This is the entry point for thread.
   public void run() {
      try {
      for(int i = 15; i > 0; i--) {
         System.out.println(name + ": " + i);
         Thread.sleep(200);
         synchronized(this) {
            while(suspendFlag) {
               wait();
            }
          }
        }
      } catch (InterruptedException e) {
         System.out.println(name + " interrupted.");
      }
      System.out.println(name + " exiting.");
   }
   void mysuspend() {
      suspendFlag = true;
   }
   synchronized void myresume() {
      suspendFlag = false;
       notify();
   }
}

class SuspendResume {
   public static void main(String args[]) {
      NewThread ob1 = new NewThread("One");
      NewThread ob2 = new NewThread("Two");
      try {
         Thread.sleep(1000);
         ob1.mysuspend();
         System.out.println("Suspending thread One");
         Thread.sleep(1000);
         ob1.myresume();
         System.out.println("Resuming thread One");
         ob2.mysuspend();
         System.out.println("Suspending thread Two");
         Thread.sleep(1000);
         ob2.myresume();
         System.out.println("Resuming thread Two");
      } catch (InterruptedException e) {
         System.out.println("Main thread Interrupted");
      }
      // wait for threads to finish
      try {
         System.out.println("Waiting for threads to finish.");
         ob1.t.join();
         ob2.t.join();
      } catch (InterruptedException e) {
         System.out.println("Main thread Interrupted");
      }
      System.out.println("Main thread exiting.");
   }
}
Here is the output produced by the above program:
New thread: Thread[One,5,main]
One: 15
New thread: Thread[Two,5,main]
Two: 15
One: 14
Two: 14
One: 13
Two: 13
One: 12
Two: 12
One: 11
Two: 11
Suspending thread One
Two: 10
Two: 9
Two: 8
Two: 7
Two: 6
Resuming thread One
Suspending thread Two
One: 10
One: 9
One: 8
One: 7
One: 6
Resuming thread Two
Waiting for threads to finish.
Two: 5
One: 5
Two: 4
One: 4
Two: 3
One: 3
Two: 2
One: 2
Two: 1
One: 1
Two exiting.
One exiting.
Main thread exiting.


Using Multithreading:

The key to utilizing multithreading support effectively is to think concurrently rather than serially. For example, when you have two subsystems within a program that can execute concurrently, make them individual threads.
With the careful use of multithreading, you can create very efficient programs. A word of caution is in order, however: If you create too many threads, you can actually degrade the performance of your program rather than enhance it.
Remember, some overhead is associated with context switching. If you create too many threads, more CPU time will be spent changing contexts than executing your program!